BACKYARD COMPOSTING

Presented by Laurin Pause

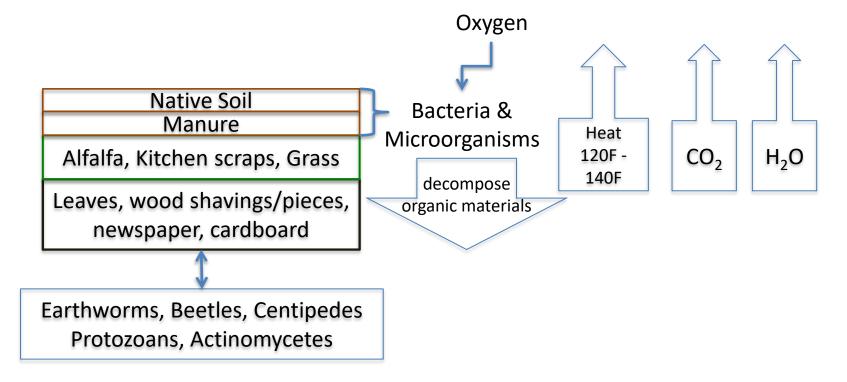
University of Arizona Yavapai County Cooperative Extension Master Gardener Program

YAVAPAI COUNTY MASTER GARDENERS

- Extension Programs include
 - Master Gardeners Help Desk
 - Free Soil Testing by Master Gardeners
 - 4-H Youth Program
 - Youth outdoor science education
 - Family consumer health sciences
 - Professional food manager education courses
- MG Help Desk contact information

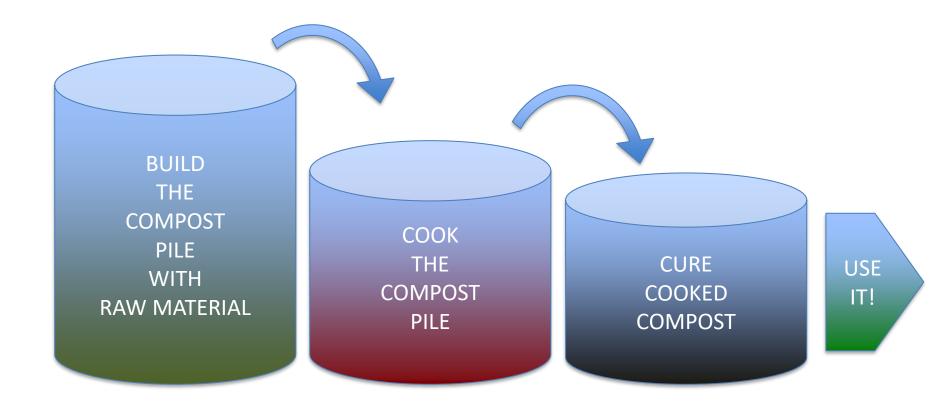
Camp Verde Help DeskPrescott Help DeskVerdeValleyMG@gmail.comPrescottMG@gmail.com928-554-8992928-445-6590 ext 222

LET'S DISCUSS COMPOSTING!



- Definition of Composting
- Why Everyone Should be Composting
- 7 Steps to Successful Composting
- Problem Solving
- Using Finished Compost

WHAT IS COMPOSTING?


DEFINITION: Composting is the aerobic decomposition of organic materials by microorganisms under controlled conditions

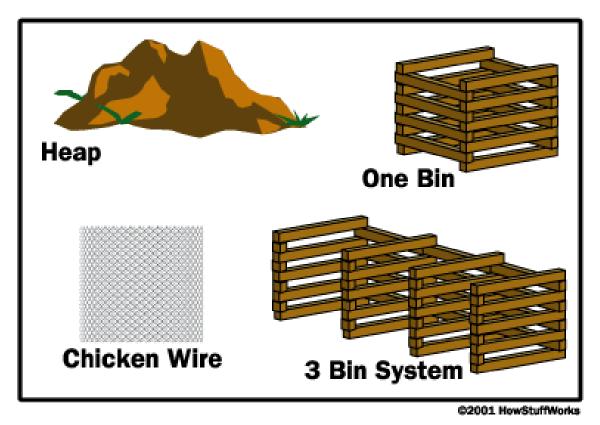
WHAT IS COMPOSTING?

3 STAGES OF COMPOSTING:

WHY COMPOST?

- Improves soil structure,
 drainage, aeration and water
 holding capacity
- Provides nutrients for plant growth that are released slowly and less likely to be leached away
- Reduce Landfill Burden

- ☐ Step 1. Select Composting Site
- ☐ Step 2. Choose a Container Type
- ☐ Step 3. Collect Raw Materials
- ☐ Step 4. Aerate The Compost Pile
- ☐ Step 5. Maintain Moisture Levels
- ☐ Step 6. Keep Proper Temperature
- ☐ Step 7. Cure The Compost



- Step 1. Select Composting Site
 - Minimum of 6 hours of sunlight BEWARE of AZ HEAT!
 - Away from structures and minimize view
 - Access to water like hose or irrigation
 - Slightly sloped ground with good drainage NOT A DITCH!
 - Downwind from homes,
 windows, and outdoor patio
 - Barricade out large animals like squirrels, packrats, birds, skunks, deer and DOGS!

- Step 2. Choose Container Type to build or buy
 - Many shapes work: Heap, Hoop, Bin, Barrel

* Size: Ideally 1 cubic yard (3ft x 3ft x 3ft)

Step 2. Choose Container Type

Left: UMN Extension Office hoop bins

Center: Arizona Desert Botanical Garden Compost Bins

Right: Backyard compost pile

* Size: Ideally 1 cubic yard (3ft x 3ft x 3ft)

Step 2. Container Type

Barrel Tumblers

- ✓ Bins spin on axel
- ✓ Third "bin" is open bucket
- ✓ Monthly progression

• Step 2. Container Type - Pre-fab Bins

- Step 3. Collect Raw Materials
 - Use natural and organic materials
 - Chopped, shredded, clipped will decompose faster (<2in)
 - Acceptable: grass, leaves, wood, bark, stems, stalks, garden waste, kitchen scraps, coffee grounds & filters, Tea bags, eggshells, newspapers, cardboard
 - Beware pests and diseased pieces
 - Unacceptable: meats, oils, dairy, bones, pet waste, synthetics, glossy papers, toxic chemicals
 - ➤ DO NOT use toxic plant materials

- Step 3. Raw Materials continued
 - Carbon-to-Nitrogen Ratio (C:N) is 25:1 to 40:1

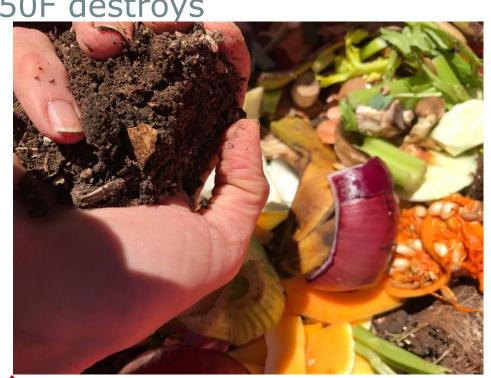
Carbon-rich materials		Nitrogen-rich materials	
Wood chips	400:1	Fresh leaves	40:1
Cardboard	350:1	Garden waste	30:1
Sawdust	325:1	Fruit waste	25-40:1
Newspaper	175:1	Horse or Cow Manure	20-30:1
Straw	75:1	Coffee Grounds	20:1
Dried leaves	60:1	Grass Clippings	20:1
		Alfalfa	12-15:1
		Vegetable Scraps	12-25:1
		Chicken Manure	7:1

- Step 3. Raw Materials continued
 - Build the pile in layers...
 - Brown: 6-8 inches
 - Green: 3-4 inches
 - Manure: 1-2 inches
 - Native Soil: 1-2 inches
 - Create 3 or 4 repetitions

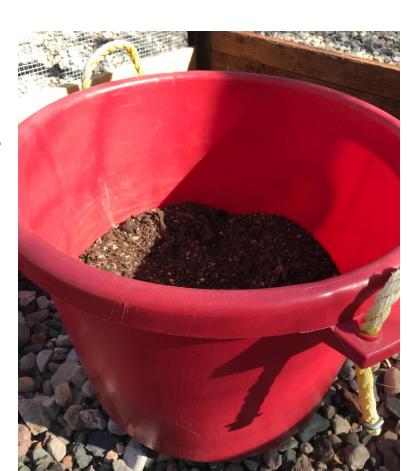
Native Soil			
Manure			
Alfalfa, Kitchen scraps, Grass			
Leaves, wood shavings/pieces,			
newspaper, cardboard			
Native Soil			
Manure			
Alfalfa, Kitchen scraps, Grass			
Leaves, wood shavings/pieces,			
newspaper, cardboard			
Native Soil			
Manure			
Alfalfa, Kitchen scraps, Grass			
Leaves, wood shavings/pieces,			
newspaper, cardboard			

- Step 4. Aerate the pile
 - Turn the Pile but not too often
 - Re-introduction of oxygen
 - Use pitchfork or mechanical turner
 - How often affects how quickly the pile decomposes
 - Turn weekly finished in 1 to 2 months
 - Turn monthly finished in 4 to 6 months
 - Don't turn, wait for 6 to 12 months

- Step 5. Keep the pile moist
 - Need moisture for metabolic process
 - Smaller piles need to be watered more often
 - Choosing a site that has good water access is a good idea
 - Moist like a damp sponge
 - Too dry and process slows down
 - Too wet and water displaces air in pore spaces


Be Cautious if using a Barrel Tumbler! Need good drain holes and balance of materials.

- Step 6. Keep proper temperature
 - Mesophilic or Cold composting (50F to 105F)
 - Thermophilic or Hot composting (above 105F)


 Temps above 110F to 150F destroys most pathogens, weed seeds and fly larvae

 Beware of spontaneous combustion especially in Arizona heat

- Step 7. Curing the compost
 - Allow the finished pile to sit UNDISTURBED for 1 month
 - Stabilizes the final chemical and decomposition reactions
 - Improper curing will kill your young plants from release of gases

So what can go wrong?

- Practice, Trials, What about... Don't be afraid to get started!
- Learn from Unpleasant Odors
- Slimy or Waterlogged Piles?
- Slow or No Decomposing Action

- Unpleasant Odors
 - > Compaction means insufficient oxygen; turn the pile
 - > Excess moisture; add porous material like sawdust
 - Sour or Sulfurous smell? Turn the pile to increase oxygen
 - > Ammonia smell? Add carbon to stabilize the nitrogen

- Slimy or waterlogged pile
 - Stir the outer drier materials toward the wet center
 - Reduce added water especially if on a timer
 - Reconsider drainage of site
 - If pile is damp but won't heat, add ammonia sulphate or grass clippings (add nitrogen)

Slow breakdown of organic material

- > Try turning the pile if in mesophilic cold temps
- > Insulate sides to capture metabolic warmth
- > Add water while turning the pile
- Move Barrels next to a warm rock wall
- May need more nitrogen but start sparingly
 - >Add 1lb nitrogen to 1 cubic yard of material
- > Cold weather may require insulation or larger pile size
- > OR the active stage of composting may be complete

FINISHED COMPOST

- Should be dark, crumbly and have earthy odor
- Pile should feel only slightly warmer than ambient air temp
- Pile will reduce in size up to half from raw material stage

FINISHED COMPOST

Hot Composting creates a soil-like compost

- Particle size is less than ½ inch
- Use as a soil amendment
 - Incorporate just prior to planting
 - ➤ Use up to 1:1 ratio with soil
- Gardens, Containers, Turf
 - Existing plantings can be side-dressed or drilled in being aware of roots
- Promotes better rooting
 - > Improves soil structure
 - Better aeration and water retention
- Reduces need for fertilizer

FINISHED COMPOST

Cold Composting creates a chunky compost with larger bits of organic matter

- Use as a top dressing or mulch
- Place loosely around plantings without disturbing the soil
- Reduces moisture loss
- Promotes roots closer to the surface

Hot Compost

- Keeps soil cool so wait until soil temps warm up
- Decomposition of mulch by organisms will be naturally moved down into the soil

BACKYARD COMPOSTING

It easy and fun!

 So many benefits for your yard and garden!

It is the Ultimate Recycling Program!

BACKYARD COMPOSTING

Any Questions?

The University of Arizona is an equal opportunity provider.

Learn more at: https://extension.arizona.edu/legal-disclaimer

